

Facult

Campus Mitte,

Electrode Materials for Na-ion batteries

11111

....

Philipp Adelhelm and team

Humboldt-Universität zu Berlin Helmholtz-Zentrum Berlin

@adelhelm_group

POLiS Seminar Series, July 24 2024 (online)

Group activities

- Studies on Na-ion batteries since 2010
- Currently about 30 group members, most of them working on "Na-ion" (liquid & SSB)
- Junior BMBF research group: Gustav Graeber
- Inorganic materials (oxides, sulfur & sulfides, carbons, metals, Prussian Blue/White)
- Operando methods

Read Support Notes and play the video game http://bit.ly/euchems-pt

COO This work is licensed under the Creative Commons Attribution-NoDerivs CC-BY-ND

Today's menu

Layered materials:

- Layered oxides and sulfides
- Graphite

Metals

Na and Sn

Conversion materials

 CuS – a unique electrode materials studied with tomography

Layered Materials

Strategies for tuning the properties of layered materials in Na-ion (and Li-ion) batteries

Tuning properties through adjusting transition metals and dopants

Tuning properties through solvent co-intercalation

1) $Na_{0.67}[Ni_{0.33}Mn_{0.67}]O_2$ doped with Mg, Sc

2) New model for solvent co-intercalation

3) Apply solvent co-intercalation to cathode materials

Cathode materials – Layered materials

- Removing Na from layered oxides strongly depends on the SOC while the effect is much smaller for Li.
- · Obviously the same materials behave quite different for Li and Na

 \rightarrow Why more complexity in case of sodium? Why is there a more diverse chemistry?

Layered oxides and tuning their properties

Na layered oxides with **one TM**, i.e. NaTMO₂

Na layered oxides with several transition metals $Na[TM_1TM_2TM_3,...]O_2$ and other substitutional elements like Li⁺, $Mg^{2+},...$

Jiang (2023) doi:10.1007/s40843-023-2617-5

Yabuuchi/Komaba (2014) doi:10.1021/cr500192f

Example: P2-Na_{0.67}[Ni_{0.33}Mn_{0.67}]O₂ doped with Mg or Sc

Isovalent substitution of Ni²⁺ by Mg²⁺ (similar radii, similar size)

Aliovalent substitution of Ni²⁺ by Sc³⁺

(similar radii, but different charges \rightarrow requires charge compensation)

High voltage region: Phase transition causes strong decrease in interlayer spacing

Y. Li et al. / Competing mechanisms determine oxygen redox in doped Ni-Mn based layered oxides for Na-ion batteries, 2024 doi: 10.1002/adma.202309842

Example: P2-Na_{0.67}[Ni_{0.33}Mn_{0.67}]O₂ doped with Mg or Sc

Sc doping: Most effective for smoothening the voltage profile and minimizing lattice changes. Mg doping: Trunkates the high voltage plateau (less O redox?)

Y. Li et al. / Competing mechanisms determine oxygen redox in doped Ni-Mn based layered oxides for Na-ion batteries, 2024 doi: 10.1002/adma.202309842

Example: P2-Na_{0.67}[Ni_{0.33}Mn_{0.67}]O₂ doped with Mg or Sc

Mg doping: Most effective in mitigating O-redox (bit surprising at first!)

Example: P2-Na_{0.67}[Ni_{0.33}Mn_{0.67}]O₂ doped with Mg or Sc Mg doped P2-Na_{0.67}[Ni_{0.33}Mn_{0.67}]O₂

3.

3

3

Ō

30

60

P2-NaNMO

120

150

90

Voltage / V

Y. Li et al. / Competing mechanisms determine oxygen redox in doped Ni-Mn based layered oxides for Na-ion batteries, **2024 doi:** <u>10.1002/adma.202309842</u>

Example: O3-Na_{1.0}[Ni_{0.50}Mn_{0.50}]O₂ doped with Mg or Sc

O3-Na_{1.0}[Ni_{0.50}Mn_{0.50}]O₂ Many phase transitions, large shrinkage

O3-Na_{1.0}[Mg_{0.1}Ni_{0.4}Mn_{0.5}]O₂ Less phase transitions, less shrinkage, additional redox center, better cycle life

O3-Na_{1.0}[Sc_{0.1}Ni_{0.4}Mn_{0.5}]O₂ Less phase transitions, less shrinkage, no additional redox center, better cycle life

Y. Li et al. / 'Oxygen bound to Mg' as high voltage redox center causes sloping of the potential profile in Mg-doped layered oxides for Na-ion batteries, **2024 submitted**

Stability of electrolytes and electrodes: Gas analysis (DEMS)

Gas analysis

Determination of gas release during charging/ discharging of a battery (e.g. When does overcharging takes place?). Can be quantitative.

Our project

Improving data analysis

 \rightarrow Analyzing the whole spectra instead of detecting only single masses. Improving quantification.

Improving cell design

 \rightarrow Minimize artefacts, trapping of gas bubbles

J. Geisler, L. Pfeiffer, G. A. Ferrero, P. Axmann, P. Adelhelm Batteries and Supercaps, 2024, doi: 10.1002/batt.202400006

Stability of Na-ion layered cathode active materials

Electrolyte stability in Na_{0.67}[Mn_{3/4}Ni_{1/4}]O₂ half-cells

- 1.5 4.25 V vs. Na+ / Na
- More gas release in case of PC electrolyte!
- Validation with operando pressure measurements
- 3-electrode geometry important, especially when carbonates are used in half cells.

J. Geisler, L. Pfeiffer, G. A. Ferrero, P. Axmann, P. Adelhelm Batteries and Supercaps, 2024, doi: 10.1002/batt.202400006

Stability of Na-ion layered cathode active materials

Electrolyte stability in $Na_{0.67}[Mn_{3/4}Ni_{1/4}]O_2$ half-cells

- 1.5 4.25 V vs. Na⁺ / Na
- More gas release in case of PC electrolyte!
- Validation with operando pressure measurements
 - 3-electrode geometry important, especially when carbonates are used in half cells.

J. Geisler, L. Pfeiffer, G. A. Ferrero, P. Axmann, P. Adelhelm Batteries and Supercaps, 2024, doi: 10.1002/batt.202400006

Layered Materials

Strategies for tuning the properties of layered materials in Na-ion (and Li-ion) batteries

Tuning properties through adjusting transition metals and dopants

Type and ratios of TM (Mn, Fe, Ni,....) Dopants (Ti, Mg, Li,....

Y. Kravets / I. Escher (own data)

Extreme volume expansion

Intercalation of solvated ions can be highly reversible despite large volume change Exfolation but no delamination occurs (the structure remains crystalline!) Concept minimizes charge transfer resistance (= high energy efficiency, fast charging)

Intercalation of solvated ions can be highly reversible despite large volume change Exfolation but no delamination occurs (the structure remains crystalline!) Concept minimizes charge transfer resistance (= high energy efficiency, fast charging)

Voltage profile indicate that crystalline structure is preserved Redox potential can be changed by changing the co-intercalating solvent (up to a few hundred mV)

Phys. Chem. Chem. Phys., doi: 10.1039/C6CP00651E

Rate tests indicate very fast kinetics despite the large size of the solvated ions. Theory* and NMR** suggest high mobility of solvated Na⁺ in graphite lattice (*D*=1.1·10⁻⁸ cm²/s). Activation energy for charge transfer < 10 kJ/mol as compared to around 60 kJ/mol for normal intercalation***

*** K. Janßen et al. / to be published

* SC Jung et al., *Nano Energy*, 2017 DOI: 10.1016/j.nanoen.2017.03.015

** K Gotoh et al., J. Phys. Chem. C., 2016, DOI: 10.1021/acs.jpcc.6b10962

Intercalation of solvated ions can be highly reversible despite large volume change Concept minimizes charge transfer resistance (= high energy efficiency, fast charging)

M. Goktas et al – *Adv. Energy Materials*, **2018**, 1702724 M. Goktas et al., *J. Phys. Chem. C.*, **2018**, 122, 47, 26816-26824

I. Escher et al. Energy Technology, 2021, 2000880

G. Ferrero et al. Adv. Energy Materials, 2023, 2202377 (full cell, co-intercalation battery)

Operando electrochemial dilatometry

Quite similar to this situation, batteries and electrodes change their size during charging and discharging, they are "breathing"

nm resolution

Electrode thickness

Charge/Discharge cylces

Shape contains information on storage mechanism

Review on operando dilatometry: I. Escher et al., Energy Technology, 2022, doi: 10.1002/ente.202101120

Applying operando electrochemical dilatometry

M. Gotkas et al., Avanced Energy Materials, 2018, doi: 10.1002/aenm.201702724

Applying operando electrochemical dilatometry

I. Escher et al., Adv. Materials Interfaces, 2021, 2100596 Review: I. Escher et al., *Energy Technology*, 2022, 10, *5*, DOI: 10.1002/ente202101120

...we had learned a lot but a major question was still unclear:

How many solvent molecules co-intercalate into graphite and what is the formation process?

 $\operatorname{Na}^+(\operatorname{diglyme})_n + x \cdot C + e^- \longrightarrow \operatorname{Na}(\operatorname{diglyme})_n C_x$

Illustration too simple!

How many solvent molecules co-intercalate into graphite?

What experiments can be made to answer this question?

XRD, Dilatometry,.... Change of electrode mass Change of electrolyte conductivity Change of optical properties Change in entropy Change in ssNMR spectra Theory

New model for the co-intercalation process G. Avall et al., Adv. Energy Materials, 2023,

doi: 10.1002/aenm.202301944

Change in electrolyte conductivty during solvent co-intercalation:

Idea: Measure conductivity change of the electrolyte during the reaction and calculate how much solvent is co-intercalating

As soon as the first Na⁺ intercalates, the electrolyte concentration rapidly increases. This means that many solvents enter the graphite structure, up to approx. 7 diglyme molecules for every Na⁺!

Step 1: pore formation & pore filling

Step 1: pore formation & pore filling

Step 2: Replacement of free solvents

Step 1: pore formation & pore filling

Step 2: Replacement of free solvents

Step 3: Geometric optimization

Solvent co-intercalation: operando optical microscopy

Solvent co-intercalation: operando optical microscopy

Step 1: pore formation & pore filling

If pore filling takes place, additional solvents may be co-intercalated.

...from ternary, to quarternary intercalations, to quinary etc. compounds?

From ternary to quarternary intercalation compounds

Zhang/Lerner Nanotechnology, 2018, 325402
I. Escher, *Energy Technology*, 2021, doi:10.1002/ente.202000880

Adding ethylene diamine as co-solvent:

- Changes the reaction mechanism and leads to a quarternary GIC (*q*-GIC), i.e. graphite intercalated by Na⁺ and two different solvents
- Significantly reduces the interlayer spacing (from 1.1 nm to 0.7 nm)^[1] and the electrode breathing (from 40-60 % to around 15-20 %)^[2]

From ternary to quarternary intercalation compounds

Diglyme can promote the co-intercalation of others solvents too (DOL and THF)

Y. Son et al., Diglyme as a promoter for the electrochemical formation of quaternary graphite intercalation compounds containing two different types of solvents, *Batteries & Supercaps.*, **2024**, doi: <u>10.1002/batt.202300506</u>

Can we build a co-intercalation battery?

Negative electrode Positive electrode Solvated Na⁺

Adv. Energy Mater. (2022)

G. Alvarez et al. Advanced Energy Materials, 2023, 2202377, DOI:10.1002/aenm.202202377

TiS₂ - Intercalation of solvated Na-ions

G. Alvarez Advanced Energy Materials, 2022, 2202377, DOI:10.1002/aenm.202202377

TiS₂ - Intercalation of solvated Na-ions

G. Alvarez Advanced Energy Materials, 2022, 2202377, DOI:10.1002/aenm.202202377

THF or EC:DEC as solvents: no solvent co-intercalation

TiS₂ - Intercalation of solvated Na-ions

What about solvent co-intercalation in Na_xTiS₂

Y. Sun et al. Preprint: doi: 10.21203/rs.3.rs-4564500/v1

Today's menu

Layered materials:

- Layered oxides and sulfides
- Graphite

Metals

Na and Sn

Conversion materials

 CuS – a unique electrode materials studied with tomography

Anode materials: Sodium

Plating on current collector Different currents for 1 mAh cm⁻² 1M NaPF₆ in Diglyme \rightarrow Tip growth mechanism Plating on current collectore $0.25 \text{ mA for 1 mAh cm}^{-2}$ Alternative electrolyte \rightarrow Root growth mechanism

Anode materials: Alloys

	Li			Na			
Zn	13	14	15	Zn	13	14	15
LiZn	AlLi	Li ₂₂ Si ₅	Li₃Sb	NaZn ₁₃	Ga₄Na	NaSi	Na₃Sb
Li_2Zn_3	Al_2Li_3	$Li_{15}Si_4$	Li₂Sb		$Ga_{39}Na_{22}$	Ge₄Na	NaSb
					(Ga ₁₃ Na ₇)		
LiZn ₂	AILi _{2-x}	Li ₂₁ Si ₈			In ₈ Na₅	GeNa	
Li ₂ Zn ₅	Al ₄ Li ₉	Li ₂ Si			InNa	GeNa₃	
LiZn ₄	Ga ₁₄ Li ₃	GeLi ₃			InNa ₃	Na ₁₅ Sn₄	
		Ge ₅ Li ₂₂			Na ₅ 11	Na ₃ Sn	
	Cali					Na ₉ Sri ₄	
	Ga ₄ Li ₆	Li ₇ SH ₂			NaTL	NaSn.	
	Galia	LisSn			I Vall2	NaSn ₂	
	InLi	Li ₇ Sn ₂				NaSn	
	In₄Li₅	LiSn				NaSn ₆	
	In ₂ Li ₃	Li ₂ Sn ₅				PbNa	
	InLi ₂	Li₄Pb				Pb₄Na൭	
	In ₃ Li ₁₃	Li ₁₀₍₈₎ Pb ₃				Pb₂Na₅	
	Li₄Tl	Li ₃ Pb				Pb₄Na₁₅	
	Li₃Tl	Li ₅₍₇₎ Pb ₂					
	Li ₅ Tl ₂	LiPb					
	Li ₂ TI						
	LiTI						

Metals: Lithium generally forms more intermetallic phases than Na

 \rightarrow Using Si in SIBs fails so far, AI can be used as current collector!

P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed., 2018

$$Sn + 3.75 Na^+ + 3.75 e^- \longrightarrow Na_{3.75}Sn q_{th} = 874 mAh/g$$

Sn + 3.75 Na⁺ + 3.75
$$e^ \longleftrightarrow$$
 Na_{3.75}Sn q_{th} = 874 mAh/g Sn → Na_{3.75}Sn: ΔV= + 420 %

T. Palaniselvam et al., Adv. Funct. Materials, 2019, DOI: 10.1002/adfm.201900790

A closer look on the surprises when sodiating Sn

T. Palaniselvam et al., Adv. Funct. Materials, 2019, DOI: 10.1002/adfm.201900790

A closer look on the surprises when sodiating Sn

T. Palaniselvam et al., Adv. Funct. Materials, 2019, DOI: 10.1002/adfm.201900790

Tailoring the voltage profile: From Sn to SnSb

Today's menu

Layered materials:

- Layered oxides and sulfides
- Graphite

Metals

Na and Sn

Conversion materials

 CuS – a unique electrode materials studied with tomography

From Li/Na-ion batteries to Li/Na solid-state batteries

Solidifying batteries:

Main motivation: Higher energy density, better safetyMain difference: Mechanical properties become much more important

Copper sulfide – CuS (covellite)

Covellite: A naturally occuring mineral. Source: Mineralienatlas.de; Grube Clara, Black forest.

Copper sulfide – CuS (covellite)

Covellite: A naturally occuring mineral – even in Germany. Source: Mineralienatlas.de; Grube Clara, Black forest.

Mixed conductor (Cu⁺, e⁻) Conductivity 760 S/cm

Cell voltage 1.96 V **q**_{th}(CuS) 561 mAh/g Energy 961 Wh/kg Vol. expansion + 75 %

A. L. Santosha et al., Adv. Energy Materials., 2020, DOI: 10.1002/aenm.202002394

Very large crystals form during discharge. Ideal case for tomography!

After discharge

Before discharge

A. L. Santosha et al., Adv. Energy Materials., 2020, DOI: 10.1002/aenm.202002394 (cooperation with JLU Giessen, BASF)

Tomography study

0.0

locv

0

3-

2

Cell voltage / V

Zhenggang Zhang *et al.*, *Adv. Energy Materials.*, **2022**, DOI: 10.1002/aenm.202203143 In cooperation with Ingo Manke group at HZB

FIB/SEM study

Tomography study

Zhenggang Zhang *et al., Adv. Energy Materials.*, **2022**, DOI: 10.1002/aenm.202203143 In cooperation with Ingo Manke group at HZB

Tomography study

Zhenggang Zhang *et al., Adv. Energy Materials.*, **2022**, DOI: 10.1002/aenm.202203143 In cooperation with Ingo Manke group at HZB

Take home message

- Na-ion batteries are entering the market! There is great potential for improving electrode materials.
- Intercalation of solvated ions into solid host structures enriches the chemical space of battery materials
- Understanding electrode materials requires many analytical tools and input from different science disciplines. Important contributions can be made through operando studies and synchrotron / neutron facilities.
- Solid-state batteries are another technology of great interest. Mechanical properties (crack formation, contact loss,....) add to the complexity

Questions?

X @adelhelm_group @adelhelm @adelhelm

Funding: HU Berlin, HZB Berlin, BMBF, DFG, ERC, CSC, AvH

Cooperation partners of results from this talk: Giessen (Janek), Jülich (Kaghazchi), ZSW (Axmann), HZB (Manke), BESSY/DESY synchrotrons

Postdoc position available

Na-sulfur solid state battery project (Deadline July 26), 2 years

Sodium Battery Symposium (SBS-5) Berlin, Sept 23-25 2024 (updates on Linkedin) https://www.helmholtz-berlin.de/events/international-sodiumbattery-symposium/index_en.html